Statistical analysis of galaxy surveys – I. Robust error estimation for two-point clustering statistics

نویسندگان

  • P. Norberg
  • C. M. Baugh
  • E. Gaztañaga
  • D. J. Croton
چکیده

We present a test of different error estimators for two-point clustering statistics, appropriate for present and future large galaxy redshift surveys. Using an ensemble of very large dark matter CDM N-body simulations, we compare internal error estimators (jackknife and bootstrap) to external ones (Monte Carlo realizations). For three-dimensional clustering statistics, we find that none of the internal error methods investigated is able to reproduce either accurately or robustly the errors of external estimators on 1 to 25 h−1 Mpc scales. The standard bootstrap overestimates the variance of ξ (s) by∼40 per cent on all scales probed, but recovers, in a robust fashion, the principal eigenvectors of the underlying covariance matrix. The jackknife returns the correct variance on large scales, but significantly overestimates it on smaller scales. This scale dependence in the jackknife affects the recovered eigenvectors, which tend to disagree on small scales with the external estimates. Our results have important implications for fitting models to galaxy clustering measurements. For example, in a two-parameter fit to the projected correlation function, we find that the standard bootstrap systematically overestimates the 95 per cent confidence interval, while the jackknife method remains biased, but to a lesser extent. Ignoring the systematic bias, the scatter between realizations, for Gaussian statistics, implies that a 2σ confidence interval, as inferred from an internal estimator, corresponds in practice to anything from 1σ to 3σ . By oversampling the subvolumes, we find that it is possible, at least for the cases we consider, to obtain robust bootstrap variances and confidence intervals that agree with external error estimates. Our results are applicable to two-point statistics, like ξ (s) and wp(rp), measured in large redshift surveys, and show that the interpretation of clustering measurements with internally estimated errors should be treated with caution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Analysis of Galaxy Surveys-I. Robust error estimation for 2-point clustering statistics

We present a test of different error estimators for 2-point clustering statistics, appropriate for present and future large galaxy redshift surveys. Using an ensemble of very large dark matter ΛCDM N-body simulations, we compare internal error estimators (jackknife and bootstrap) to external ones (Monte-Carlo realizations). For 3-dimensional clustering statistics, we find that none of the inter...

متن کامل

A robust wavelet based profile monitoring and change point detection using S-estimator and clustering

Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...

متن کامل

Statistical Analysis of Galaxy Surveys-IV: An objective way to quantify the impact of superstructures on galaxy clustering statistics

For galaxy clustering to provide robust constraints on cosmological parameters and galaxy formation models, it is essential to make reliable estimates of the errors on clustering measurements. We present a new technique, based on a spatial Jackknife (JK) resampling, which provides an objective way to estimate errors on clustering statistics. Our approach allows us to set the appropriate size fo...

متن کامل

PTHalos: A fast method for generating mock galaxy distributions

Current models of galaxy formation applied to understanding the large-scale structure of the universe have two parts. The first is an accurate solution of the equations of motion for the dark matter due to gravitational clustering. The second consists of making physically reasonable approximations to the behavior of baryons inside dark matter halos. The first uses large, computationally intensi...

متن کامل

Projected Three-Point Correlation Functions and Galaxy Bias

The three-point correlation function (3PCF) can now be measured in large galaxy redshift surveys, but in three dimensions its interpretation is complicated by the presence of redshift-space distortions. I investigate the projected 3PCF, where these distortions are eliminated by integrating over the redshift dimension, as is commonly done for the two-point correlation function. The calculation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009